Remotely sensed reflectance and its dependence on vertical structure: a theoretical derivation.

نویسنده

  • J R Zaneveld
چکیده

An exact expression for the remotely sensed reflectance (RSR, upwelling radiance divided by downwelling scalar irradiance) just beneath the surface of the ocean is derived from the equation of radiative transfer. It is shown that the RSR at a given depth in the ocean depends only on the inherent optical properties, the attenuation coefficient for upwelling radiance, and two shape factors that depend on the radiance distribution and volume scattering function. The shape factors are shown to be close to unity. An exact expression for the RSR just beneath the surface as a function of the vertical structure of inherent and apparent optical properties is derived. This expression is solved for an N-layered system, which presents the possibility of inverting remotely sensed reflectance data to obtain the vertical structure of chlorophyll in the ocean.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Theoretical derivation of the depth average of remotely sensed optical parameters.

The dependence of the reflectance at the surface on the vertical structure of optical parameters is derived from first principles. It is shown that the depth dependence is a function of the derivative of the round trip attenuation of the downwelling and backscattered light. Previously the depth dependence was usually modeled as being dependent on the round trip attenuation. Using the new relati...

متن کامل

Effects of the Inherent Optical Properties on Remotely Sensed Reflectance

This work includes using two-flow and full radiative transfer models to evaluate the conditions under which subsurface optical structure is detectable, and to develop an inversion model to determine the vertical structure of the IOP based on the presence of horizontal gradients in the spectral reflectance. We are also examining the role of the volume scattering function in determining the measu...

متن کامل

A Comparative Study of SVM and RF Methods for Classification of Alteration Zones Using Remotely Sensed Data

Identification and mapping of the significant alterations are the main objectives of the exploration geochemical surveys. The field study is time-consuming and costly to produce the classified maps. Therefore, the processing of remotely sensed data, which provide timely and multi-band (multi-layer) data, can be substituted for the field study. In this study, the ASTER imagery is used for altera...

متن کامل

Spatio-temporal variability of aerosol characteristics in Iran using remotely sensed datasets

The present study is the first attempt to examine temporal and spatial characteristics of aerosol properties and classify their modes over Iran. The data used in this study include the records of Aerosol Optical Depth (AOD) and Angstrom Exponent (AE) from MODerate Resolution Imaging Spectroradiometer (MODIS) and Aerosol Index (AI) from the Ozone Monitoring Instrument (OMI), obtained from 2005 t...

متن کامل

Effect Of Radiance-To-Reflectance Transformation And Atmosphere Removal On Maximum Likelihood Classification Accuracy Of High-Dimensional Remote Sensing Data

Many analysis algorithms for high-dimensional remote sensing data require that the remotely sensed radiance spectra be transformed to approximate reflectance to allow comparison with a library of laboratory reflectance spectra. In maximum likelihood classification, however, the remotely sensed spectra are compared to training samples, thus a transformation to reflectance may or may not be helpf...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Applied optics

دوره 21 22  شماره 

صفحات  -

تاریخ انتشار 1982